Dynamics on the space of harmonic functions and the foliated Liouville problem
نویسندگان
چکیده
We study here the action of subgroups of PSL(2, R) on the space of harmonic functions on the unit disc bounded by a common constant, as well as the relationship this action has with the foliated Liouville problem: Given a foliation of a compact manifold by Riemannian leaves and a leafwise harmonic continuous function on the manifold, is the function leafwise constant? We give a number of positive results and also show a general class of examples for which the Liouville property does not hold. The connection between the Liouville property and the dynamics on the space of harmonic functions as well as general properties of this dynamical system are explored. It is shown among other properties that the Z-action generated by hyperbolic or parabolic elements of PSL(2, R) is chaotic.
منابع مشابه
Harmonic functions on R-covered foliations and group actions on the circle
Let (M,F) be a compact codimension-one foliated manifold whose leaves are equipped with Riemannian metrics, and consider continuous functions on M that are harmonic along the leaves of F . If every such function is constant on leaves we say that (M,F) has the Liouville property. Our main result is that codimension-one foliated bundles over compact negatively curved manifolds satisfy the Liouvil...
متن کاملHarmonic functions on R-covered foliations
Let (M,F) be a compact codimension one foliated manifold whose leaves are endowed with Riemannian metrics and consider continuous functions on M that are harmonic along the leaves of F . If every such function is constant on leaves we say that (M,F) has the Liouville property. Our main result is that codimension-one foliated bundles over compact negatively curved manifolds satisfy the Liouville...
متن کاملFundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کاملSturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter
This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.
متن کاملNumerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions
In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...
متن کامل